Figure 1: The performance of the proposed MSS model on a generic test image. The model may well simulate how a typical artist creates a painting \(u_0 \): first sketch the outlines \(\Gamma \) (upper right), followed by filling in the cartoonish overall shades \(u \) for each structure (lower left), and finally elaborate the detailed textures \(v \) (lower right) to bring complexion and life to the entire scene \(u_0 \).

where the “wave numbers” \(k_- \) and \(k_+ \) are positive integers, and satisfy (see Fig. 3)

\[
\begin{align*}
 k_- &\gg k_+ \gg 1. \quad (18)
\end{align*}
\]

Treat such an image as a pure texture distribution \(v \). To human vision, it is natural to identify \(x = 0 \) as a boundary or edge point. We now investigate the quantitative effect of introducing \(\Gamma = \{0\} \) as an edge point.

First assume that \(\Gamma = \{0\} \) is indeed acknowledged as an edge point. Then \(v = u_0 \) is segmented into two components \(v_{\pm} \) on each \(\Omega_{\pm} \). Let \(\Phi_{\pm} \) denote the corresponding texture potentials. Then one must have

\[
-\Phi_{\pm}''(x) = v_{\pm}, \quad \Phi_{\pm}(z) = 0, \quad z \in \partial \Omega_{\pm},
\]

where \(\pm \)'s must be uniformly + or -. Therefore, we have

\[
\Phi_{\pm} = \frac{\sin(k_{\pm}x)}{k_{\pm}^2},
\]

and

\[
\|v\|^2_{H^{-1}(\Omega, \Gamma)} = \int_{-\pi}^{0} \Phi_{\pm}'(x)^2 \, dx + \int_{-\pi}^{\pi} \Phi_{\pm}'(x)^2 \, dx = \frac{\pi}{2} \left(\frac{1}{k_-^2} + \frac{1}{k_+^2} \right) = \frac{1}{8\pi} (\lambda_-^2 + \lambda_+^2), \quad (19)
\]